What are Graphite Sheets?

Graphite sheets are advanced thermal interface materials (TIM) known for their excellent thermal conductivity, flexibility, and lightweight properties. These sheets are composed of high-quality graphite, a naturally occurring crystalline form of carbon. They are widely used in electronics, telecommunications, automotive, and industrial sectors to manage and dissipate heat efficiently.

See the complete thermal datasheet by clicking here: Artificial Graphite

Thermal Graphite sheets have several advantages that make them an essential material for thermal management. The most notable feature is their superior thermal conductivity, which can range from 300 to 1500 W/m·K, depending on the grade and thickness. This high conductivity allows for rapid heat dissipation from heat-generating components, such as CPUs, GPUs, power transistors, and LEDs, thus extending the lifespan of the devices.

LiPOLY TIM Technology : Thermal Solutions

 

Key Features of Graphite Sheets

Artificial Graphite have several advantages that make them an essential material for thermal management. The most notable feature is their superior thermal conductivity, which can range from 300 to 1500 W/m·K, depending on the grade and thickness. This high conductivity allows for rapid heat dissipation from heat-generating components, such as CPUs, GPUs, power transistors, and LEDs, thus extending the lifespan of the devices.

Another important characteristic is their flexibility and ease of customization. Artificial Graphite can be cut into various shapes and sizes to fit different applications, making them suitable for compact electronic devices or larger industrial equipment. Their lightweight nature also adds minimal extra weight to electronic components, which is crucial for modern devices that prioritize slim and lightweight designs.

Additionally, graphite sheets are resistant to high temperatures, withstanding conditions up to 400°C in an oxidizing environment or even higher in a vacuum. This makes them suitable for use in demanding environments where consistent thermal performance is necessary.

 

Applications of Graphite Sheets

Artificial Graphite are widely applied in industries where efficient thermal management is critical. In consumer electronics, they are used to cool smartphones, tablets, and laptops by transferring heat away from processors and batteries. Automotive manufacturers use them to dissipate heat in electric vehicle (EV) batteries, inverters, and LED lighting systems. Additionally, in telecommunications, graphite sheets help in managing heat within 5G infrastructure and data centers.

In industrial applications, graphite sheets are commonly used in heat sinks, thermal modules, and high-power machinery that operates continuously and generates significant heat. Their ability to conduct heat without adding bulk or weight makes them an ideal solution for various high-performance applications.

 

Conclusion

Graphite sheets are an excellent thermal interface material due to their high thermal conductivity, flexibility, and lightweight properties. Their application in electronics, automotive, telecommunications, and industrial sectors proves their versatility in heat management solutions. Whether in smartphones or high-power industrial equipment, graphite sheets help maintain performance and extend the life of heat-sensitive components.


Nano Thermal Grease – New High-Performance 

LiPOLY TT3000 Nano Thermal Grease is a highly reliable thermal interface grease made of solvent-free silicone oil compounds and thermal fillers. TT3000 provides superior performance and reliability while mitigating against pump-out and floating issues on the interface. TT3000 improves the operating process while simultaneously providing high thermal conductivity and excellent low thermal resistance. This material will handle the most demanding of applications. 

See the complete thermal datasheet by clicking here: TT3000

August eNewsletter LiPOLY TT3000 Nano Thermal Grease is a highly reliable thermal interface grease made of solvent-free silicone oil compounds and thermal fillers. TT3000 provides superior performance and reliability while mitigating against pump-out and floating issues on the interface. TT3000 improves the operating process while simultaneously providing high thermal conductivity and excellent low thermal resistance. This material will handle the most demanding of applications.  Thermal management World Leader : LiPOLY TIMs®

LiPOLY TIM Technology : Thermal Solutions


What is Thermal Putty?

Thermal putty is a highly versatile thermal interface material (TIM) designed to efficiently transfer heat between electronic components and heat sinks. It provides a flexible solution for filling uneven gaps and ensuring effective thermal contact, which is critical for preventing overheating in electronic devices. With the increasing demand for compact and powerful electronics, thermal putty has become an essential material in heat management systems, offering unique advantages over traditional TIMs like thermal grease or thermal pads.

Thermal putty is a versatile thermal interface material (TIM) that combines the properties of both thermal pads and thermal grease. It is used to enhance heat dissipation in electronic components by filling gaps and voids between heat-generating parts and heat sinks.



H-putty

Shiu Li Technology has created a new advanced Thermal Putty interface material. LiPOLY H-putty is a tolerance filled, thermally conductive putty that maintains high compressibility with low stress, high reliability, and will not flow vertically. Our H-putty can replace thermals pads in design gaps of 0.1mm-3.0mm. H-Putty has a bond line thickness of 100-3000μm. The thermal conductivity of the H-putty series is 2.0/3.5/6.0 W/m*K.

LiPOLY’s Putty Series is gap filler material with a thermal conductivity 3.5~8.0W/m*K, high deformation amount, extremely low thermal resistance, low stress, flexible gap adaptation, and excellent tolerance compensation feature can overcome overflow and dryness problems. Ideally suited for LiPOLY Smart Dispense Robot which is the best choice for automated dispensing production.

See the complete thermal datasheet by visiting: Thermal Putty

LiPOLY’s Thermal Putty Series is gap filler material with a thermal

LiPOLY TIM Technology : Thermal Solutions


Key Features of Thermal Putty

  1. Conformability: One of the standout features of thermal putty is its ability to conform to irregular surfaces. It is soft and easily moldable, allowing it to fill in even the smallest air gaps between components. This ensures complete thermal contact and minimizes thermal resistance, which enhances heat dissipation. Thermal putty is ideal for applications where precise thermal contact is required but where other TIMs might struggle to fill gaps effectively.
  2. Self-Leveling and Reworkable: Thermal putty’s self-leveling nature makes it easy to apply, as it spreads out evenly across surfaces under slight pressure. This property reduces the need for complex installation processes. Moreover, unlike some traditional TIMs, thermal putty is reworkable, meaning it can be easily removed or reapplied during maintenance or component replacement without losing effectiveness.
  3. Non-Curing: Unlike some other TIMs that require curing time to reach full effectiveness, thermal putty does not cure. This characteristic allows for instant thermal performance right after application, making it a more efficient solution for fast-paced production environments.
  4. Durability and Long-Term Stability: Thermal putty is known for its long-term stability, maintaining its thermal conductivity and physical properties over extended periods. It does not dry out or degrade, which ensures consistent performance over the lifespan of the device.

Applications of Thermal Putty

Thermal putty is commonly used in a variety of industries and applications, including:

  • Consumer Electronics: It is widely used in smartphones, tablets, and laptops, where heat dissipation is crucial for maintaining device performance and preventing overheating in compact designs.
  • Automotive: In electric vehicles (EVs), thermal putty plays a crucial role in managing the heat generated by batteries, powertrain components, and control modules.
  • Telecommunications: High-power telecom equipment, such as base stations and antennas, often rely on thermal putty to efficiently dissipate heat generated by high-performance processors and other electronic components.

Difference Between Thermal Putty and Other TIMs

Compared to other TIMs like thermal grease or thermal pads, thermal putty offers distinct advantages:

  • Better Gap-Filling: Thermal grease provides good thermal conductivity, but it may struggle to fill large or irregular gaps effectively. Thermal pads are easy to apply but may lack the flexibility needed for certain applications. Thermal putty combines the best of both worlds by offering excellent gap-filling capability and thermal conductivity in a flexible and easy-to-use form.
  • Reusability: Unlike thermal grease, which may dry out over time, or thermal pads that may lose effectiveness after reinstallation, thermal putty can be reused and reworked, making it a cost-effective solution for long-term applications.

In conclusion, thermal putty is an excellent choice for managing heat in high-performance, compact devices. Its flexibility, reusability, and superior gap-filling properties make it a highly effective TIM for modern thermal management challenges.


Fiberglass vs. Polyimide Thermal Conductive Film

When it comes to selecting thermal conductive films for electronic applications, two popular materials stand out: fiberglass and polyimide. Both materials are known for their excellent heat dissipation properties, but each offers unique characteristics that make them suitable for different applications. Understanding their strengths and differences is key to making the right choice for optimal heat management.

 

See the complete thermal datasheet by visiting: Polyimide / Fiberglass

Polyimide is a high-performance material known for its exceptional thermal stability and excellent electrical insulation properties. Polyimide-reinforced thermal conductive insulation films offer superior performance in extreme environments:Fiberglass is a highly durable material known for its excellent heat resistance and mechanical strength. When used as reinforcement in thermal conductive insulation films, it offers several advantages:

LiPOLY TIM Technology : Thermal Solutions


Fiberglass Thermal Conductive Film

Fiberglass thermal conductive films are made from a combination of glass fibers reinforced with thermally conductive fillers. This structure provides both mechanical strength and effective thermal transfer, making fiberglass an ideal choice for applications that require durability under harsh conditions.

Key Features of Fiberglass Thermal Conductive Film:

  1. Mechanical Strength: Fiberglass is known for its exceptional tensile strength, making it highly resistant to tearing, stretching, and puncturing. This makes it suitable for environments where mechanical stress or pressure is a concern.
  2. Thermal Conductivity: Fiberglass films offer moderate thermal conductivity, capable of transferring heat efficiently between components. While not as high as polyimide films in terms of thermal transfer, it performs well in less demanding applications.
  3. Cost-Effectiveness: Fiberglass thermal conductive films are generally more affordable than polyimide alternatives, making them a popular choice for cost-sensitive applications.
  4. Durability Under Extreme Conditions: Fiberglass exhibits excellent resistance to high temperatures, UV exposure, and chemicals, making it suitable for use in automotive, aerospace, and industrial environments where thermal and mechanical stress are common.

Applications: Fiberglass thermal conductive films are often used in industries where robust materials are needed, such as automotive electronics, power converters, and high-performance lighting systems.


Polyimide Thermal Conductive Film

Polyimide thermal conductive films are highly regarded for their superior thermal properties and flexibility. Made from polyimide polymers with embedded conductive fillers, these films offer high thermal conductivity along with excellent electrical insulation, making them ideal for compact, high-performance electronics.

Key Features of Polyimide Thermal Conductive Film:

  1. Superior Thermal Conductivity: Polyimide films have higher thermal conductivity compared to fiberglass, allowing for more efficient heat dissipation in demanding applications. This makes polyimide a preferred choice in advanced electronics, where precise heat management is critical.
  2. Flexibility and Thinness: Polyimide films are extremely thin and flexible, making them suitable for applications with limited space or complex geometries. This characteristic ensures that the film can conform to irregular surfaces without compromising thermal performance.
  3. High-Temperature Stability: Polyimide thermal conductive films can withstand extreme temperatures (up to 400°C or higher), maintaining their physical and thermal properties even in harsh environments. This stability makes polyimide ideal for use in aerospace, military, and advanced electronic devices.
  4. Electrical Insulation: Polyimide is also an excellent electrical insulator, providing protection against electrical shorts while efficiently conducting heat. This dual property is especially valuable in densely packed electronic assemblies.

Applications: Polyimide thermal conductive films are widely used in high-performance electronics such as semiconductors, circuit boards, and mobile devices, where efficient heat management and space-saving designs are essential.


Comparison and Conclusion

While both fiberglass and polyimide thermal conductive films serve important roles in thermal management, they excel in different areas. Fiberglass is a cost-effective, durable solution for applications requiring mechanical strength and moderate heat dissipation. In contrast, polyimide films offer superior thermal conductivity, flexibility, and high-temperature stability, making them ideal for advanced, high-performance applications.

Choosing between the two materials depends on the specific requirements of the application, including factors like temperature range, mechanical stress, and cost constraints. For high-performance electronic devices that demand efficient heat dissipation in tight spaces, polyimide films are the clear choice. On the other hand, fiberglass films are more suitable for robust, cost-effective solutions in industrial and automotive systems.


Thermally Conductive Grease, also known as thermal paste or thermal compound, is a thermally conductive material used to improve the heat transfer between a heat-generating component, such as a CPU or GPU, and a heatsink or cooling solution. The purpose of thermal grease is to fill microscopic imperfections or air gaps on the surface of the component and the heatsink, ensuring maximum contact and efficient heat dissipation. Without thermal grease, these air pockets can act as thermal insulators, significantly reducing the cooling efficiency of the device.

Thermally conductive grease is one-component thermal management material, designed to maximize thermal performance and offers assist in cooling the CPUs GPUs.



LiPOLY’s N series is a non-silicon thermal grease with a thermal conductivity of 1.3-6.0W/m*K. None low-molecular- weight siloxane volatilization cause no electrical contact failure. It is suitable for optical products or sensitive electronic components. Extremely low thermal resistance and good thermal conductivity have been widely used in thermal control technology for consumer electronics and microprocessors. When the temperature of the component rises, the viscosity of the grease will decrease for wetting the interface components.

See the complete thermal datasheet by visiting: G3380NA/NJ/NK/NT Datasheet

Thermal grease, also known as thermal paste or thermal compound, is a thermally conductive material used to improve the heat transfer between a heat-generating component, such as a CPU or GPU, and a heatsink or cooling solution. The purpose of thermal grease is to fill microscopic imperfections or air gaps on the surface of the component and the heatsink, ensuring maximum contact and efficient heat dissipation. Without thermal grease, these air pockets can act as thermal insulators, significantly reducing the cooling efficiency of the device.

LiPOLY TIM Technology : Thermal Solutions


How Does It Work?

Thermally Conductive Grease is not a heat sink by itself, but it enables the heatsink to perform its function more effectively. When applied between the heat source and the heatsink, the grease spreads out evenly, allowing for better heat conduction due to its higher thermal conductivity compared to air. Thermal grease typically comes in either silicone or non-silicone formulations and may contain additives like metal oxides to enhance thermal performance.

Types of  Thermally Conductive Grease

  1. Silicone-Based Thermal Grease: This type is widely used due to its versatility and durability. It contains silicone oil mixed with fillers like zinc oxide, making it flexible and easy to apply.
  2. Non-Silicone Thermal Grease: These are often used in applications where silicone contamination is a concern. They tend to have higher thermal conductivity and stability in extreme temperatures, making them ideal for high-performance applications.

Key Uses Benefits

  • Enhancing Heat Transfer: Thermal grease fills the microscopic air gaps and imperfections between a heat source (such as a CPU or GPU) and a heat sink. This ensures efficient heat transfer by replacing air, which is a poor conductor of heat, with a material that has much higher thermal conductivity3.
  • Preventing Overheating: By improving the thermal interface between components, thermal grease helps prevent overheating, which can lead to system instability, performance degradation, or even hardware damage2.
  • Maintaining Device Stability: Proper application of thermal grease ensures that electronic devices operate within safe temperature ranges, thereby enhancing their stability and longevity.

Typical Applications

  • CPUs and GPUs: Thermal grease is commonly applied between CPUs or GPUs and their respective cooling solutions to ensure effective heat dissipation.
  • Power Electronics: Used in power supplies and motor controls where efficient thermal management is critical to maintaining performance and preventing failure.
  • Optical Devices: In applications where silicone contamination must be avoided, non-silicone thermal greases are preferred to prevent interference with sensitive optical components.

Application Techniques

  • Even Application: It is crucial to apply thermal grease evenly and in the right amount. Too much grease can act as an insulator rather than a conductor, while too little may not cover all the necessary surfaces.
  • Automated Systems: In professional settings, automated dispensing systems can be used to ensure consistent application, minimizing human error and ensuring optimal performance.

What is Thermal Grease? Thermally Conductive Grease, also known as thermal paste or thermal compound, is a thermally conductive material used to improve the heat transfer between a heat-generating component, such as a CPU or GPU, and a heatsink or cooling solution. The purpose of thermal grease is to fill microscopic imperfections or air gaps on the surface of the component and the heatsink, ensuring maximum contact and efficient heat dissipation. Without thermal grease, these air pockets can act as thermal insulators, significantly reducing the cooling efficiency of the device.

In summary, thermal grease is an essential component in modern electronics, ensuring that heat generated by high-performance components is effectively transferred to cooling systems, preventing damage and optimizing device performance.