Main Reasons for Lightweight Thermal Design in Electronic Products

  • Enhanced Portability: Lightweight electronic products are easier to carry and use, providing greater convenience for users during commuting, travel, and daily use.
  • Improved User Experience: Lighter devices reduce user fatigue during handheld use, especially for long-term usage devices such as smartphones, tablets, and e-readers. Lightweight design can significantly enhance user experience.
  • Energy Efficiency: Lightweight electronic products consume less raw materials and energy during production and reduce energy consumption during transportation, contributing to environmental protection and sustainable development.
  • Enhanced Performance: In certain electronic products, such as drones and portable sports cameras, lightweight design not only improves performance, such as flight time and stability, but also provides space for additional features.
  • Reduced Transportation Costs: Lighter products incur lower costs during logistics and transportation, benefiting both manufacturers and consumers.
  • Environmental Compliance: With the growing awareness of environmental protection and the implementation of related regulations, reducing material usage and energy consumption has become a crucial factor in electronic product design.
  • Innovation Driven: The pursuit of lightweight design often encourages designers and engineers to adopt new materials, technologies, and processes, driving innovation across the entire industry.

Lightweight Thermal Design is an important trend in the development of electronic products. It not only concerns the practicality and user experience of the product but also involves environmental protection, cost, and technological innovation. As technology advances and consumer demands change, the lightweight design of electronic products will continue to evolve to meet higher standards and expectations.

See the complete thermal datasheet by clicking here: Lightweight Thermal Series

7 Lightweight Thermal Design is an important trend in the development of electronic products. It not only concerns the practicality and user experience of the product but also involves environmental protection, cost, and technological innovation. As technology advances and consumer demands change, the lightweight design of electronic products will continue to evolve to meet higher standards and expectations. Thermal management World Leader : LiPOLY TIMs®
Main Reasons for Lightweight Thermal Design in Electronic Products Lightweight Thermal Design is an important trend in the development of electronic products. It not only concerns the practicality and user experience of the product but also involves environmental protection, cost, and technological innovation. As technology advances and consumer demands change, the lightweight design of electronic products will continue to evolve to meet higher standards and expectations.

LiPOLY TIM Technology : Thermal Solutions


What is Thermal Gel


Thermal Interface Gel is a highly efficient thermal interface material (TIM) used in various electronics and industrial applications. Designed for devices that require superior heat dissipation, thermal gel offers a versatile solution for managing excess heat in high-power components such as CPUs, GPUs, power modules, and LEDs. Its unique properties, such as high thermal conductivity and excellent gap-filling capabilities, make it an ideal choice for applications where traditional materials like thermal pads or pastes may not suffice.


 


Liquid Gap Filler : SH-putty3


LiPOLY Liquid Thermal Gel : SH-putty3 is a one-part thermally conductive putty that offers outstanding thermal conductivity at 8 W/m*K and extremely low thermal resistance under minimal pressure. SH-putty3 is a highly conformable gap filler, designed to replace gap pads and remove manufacturing tolerance. It’s ideally suited for mass production applications in which a dispensing robot is needed.

See the complete Liquid Thermal Gel datasheet by clicking here: SH-putty3

Thermal Gel Liquid Gap Filler - SH-putty3 LiPOLY Liquid Thermal Gel : SH-putty3 is a one-part thermally conductive putty that offers outstanding thermal conductivity at 8 W/m*K and extremely low thermal resistance under minimal pressure. SH-putty3 is a highly conformable gap filler, designed to replace gap pads and remove manufacturing tolerance. It’s ideally suited for mass production applications in which a dispensing robot is needed.

 

Key Benefits of Thermal Gels

One of the primary advantages of thermal gel is its excellent thermal conductivity, allowing it to effectively transfer heat away from components that tend to generate excess thermal energy. This helps to maintain optimal operating temperatures, thereby extending the lifespan and reliability of electronic devices.

Thermal gel is also extremely versatile. Unlike thermal pads, which have fixed dimensions, or thermal pastes, which can be more difficult to apply evenly, thermal gel is designed to conform easily to the shape and surface of any component. This makes it perfect for filling in irregular surfaces or gaps, ensuring maximum contact between the heat source and the heatsink, resulting in improved heat dissipation.

Differences Between Thermal Gels and Other Thermal Interface Materials

Compared to thermal paste, thermal gel offers a longer life cycle and better gap-filling properties. It is also less prone to drying out over time, making it a more reliable option for long-term applications. Thermal pads, on the other hand, are easier to apply but may not be as effective at irregular surfaces or gaps as thermal gel. The non-curing nature of thermal gel also makes it a more flexible solution in environments where mechanical stress or vibration may occur, as it can maintain its consistency without hardening or cracking.

Applications of Thermal Gels

Due to its excellent heat transfer properties and flexibility, thermal gel is used in a wide variety of applications, including:

  • Consumer electronics: Cooling for CPUs and GPUs in computers, laptops, and gaming consoles.
  • LED lighting: Efficiently dissipating heat from high-power LEDs to ensure consistent performance.
  • Power electronics: Managing heat in power modules and converters used in industrial settings.
  • Automotive electronics: Maintaining optimal performance in automotive control units and power systems.

Conclusion

In summary, thermal gels is a powerful and adaptable thermal interface material that excels in high-performance applications. Whether it’s used in consumer electronics or industrial power systems, thermal gel provides a highly efficient heat dissipation solution, extending the life of critical components and ensuring consistent performance under demanding conditions.

 

LiPOLY TIM Technology : Thermal Solutions


Nano Thermal Grease – New High-Performance 

LiPOLY TT3000 Nano Thermal Grease is a highly reliable thermal interface grease made of solvent-free silicone oil compounds and thermal fillers. TT3000 provides superior performance and reliability while mitigating against pump-out and floating issues on the interface. TT3000 improves the operating process while simultaneously providing high thermal conductivity and excellent low thermal resistance. This material will handle the most demanding of applications. 

See the complete thermal datasheet by clicking here: TT3000

August eNewsletter LiPOLY TT3000 Nano Thermal Grease is a highly reliable thermal interface grease made of solvent-free silicone oil compounds and thermal fillers. TT3000 provides superior performance and reliability while mitigating against pump-out and floating issues on the interface. TT3000 improves the operating process while simultaneously providing high thermal conductivity and excellent low thermal resistance. This material will handle the most demanding of applications.  Thermal management World Leader : LiPOLY TIMs®

LiPOLY TIM Technology : Thermal Solutions


What is Thermal Gap Filler?

Thermal gap fillers are specialized materials designed to fill air gaps between electronic components and heat sinks, improving heat transfer and managing thermal issues. As electronic devices become more powerful and compact, the need for efficient thermal management solutions like thermal gap fillers has become increasingly critical. These materials help in dissipating heat, ensuring the reliable performance and longevity of electronic systems.

Thermal gap fillers are typically soft, compressible, and highly conformable materials, designed to fit into uneven or irregular surfaces. They provide superior thermal conductivity while maintaining flexibility, which is crucial for protecting sensitive components from excessive mechanical stress.

T-Top 800

LiPOLY’s Gap Filler provide deflection thermal interfaces between heat sinks and electronic devices, accommodating for uneven surfaces. LiPOLY’s R&D team have created an ultra-soft, highly conformable, non-flammable interface material. LiPOLY T-Top 800 is a high effective material, designed to allow minimal stress on components while offering high thermal conductivity and low thermal resistance. With a thermal conductivity of 8.0 W/m*K, T-Top 800 offers excellent performance at an extremely competitive price.

See the complete thermal datasheet by visiting: Thermal Gap Filler

Thermal Gap Filler provide deflection thermal interfaces between heat sinks and electronic devices, accommodating for uneven surfaces. LiPOLY’s R&D team have created an ultra-soft, highly conformable, non-flammable interface material.

LiPOLY TIM Technology : Thermal Solutions


Key Benefits of Thermal Gap Fillers

  1. Enhanced Thermal Conductivity: Thermal gap fillers are engineered to transfer heat efficiently between components and heat sinks or other cooling systems. By filling gaps, these materials minimize thermal resistance, allowing for more efficient heat dissipation. This is essential for high-performance devices that generate a significant amount of heat, such as processors, GPUs, and power electronics.
  2. Conformability and Flexibility: One of the most important features of thermal gap fillers is their ability to conform to the surface topography of components. Their soft and compressible nature allows them to adapt to irregular surfaces and varying gap sizes. This flexibility ensures optimal contact between components and heat sinks, further improving heat transfer.
  3. Vibration Dampening: In addition to their thermal properties, thermal gap fillers also serve as vibration dampeners. They help cushion sensitive components, protecting them from mechanical shock or vibrations that could cause damage over time. This feature is especially valuable in automotive, aerospace, and industrial applications where systems are exposed to constant motion.
  4. Electrical Insulation: Many thermal gap fillers offer electrical insulation properties, which is important for protecting components from electrical shorts or static discharge. This makes them ideal for use in densely packed electronic assemblies where both thermal and electrical insulation are required.

Types of Thermal Gap Fillers

There are two primary categories of thermal gap fillers: Silicone-Based and Non-Silicone solutions, each offering unique properties and suited for different applications.

Silicone-Based Thermal Gap Fillers

  1. Thermal Stability: Silicone-based gap fillers are known for their excellent thermal stability, making them suitable for high-temperature applications. They can maintain their thermal conductivity and physical properties even under extreme heat conditions, which is crucial for devices that generate a lot of heat, such as high-performance CPUs or industrial power supplies.
  2. High Conformability: These materials are extremely flexible, allowing them to conform to uneven surfaces, which is especially important in applications with complex geometries. Their compressibility ensures that they can fill gaps without exerting excessive pressure on components, preventing mechanical damage.
  3. Durability: Silicone-based thermal gap fillers are highly durable, able to withstand environmental stress such as moisture, UV exposure, and oxidation. This makes them suitable for outdoor applications or devices that operate in harsh conditions, such as telecommunications equipment or automotive electronics.

Non-Silicone Thermal Gap Fillers

  1. Contamination-Free: Non-silicone thermal gap fillers are often used in applications where contamination is a concern. For instance, silicone can sometimes release volatile organic compounds (VOCs) during operation, which may interfere with sensitive electronics or optical systems. Non-silicone alternatives eliminate this risk, making them ideal for environments where cleanliness is essential, such as medical devices, optical systems, or semiconductor manufacturing equipment.
  2. Chemical Resistance: Non-silicone gap fillers offer better resistance to certain chemicals, fuels, or oils, which can be crucial in specific industrial applications, including automotive and aerospace systems.
  3. Comparable Performance: While silicone-based materials are typically known for their flexibility, non-silicone gap fillers can provide similar levels of thermal conductivity and conformability, ensuring that they remain a viable option for applications requiring efficient thermal management.

Applications of Thermal Gap Fillers

Thermal gap fillers are widely used in various industries that require efficient heat management:

  • Consumer Electronics: From smartphones to laptops, thermal gap fillers ensure that heat is effectively dissipated in compact devices, preventing overheating and prolonging product lifespan.
  • Automotive: In electric vehicles, thermal gap fillers play a vital role in cooling powertrain components, battery packs, and control modules to enhance performance and reliability.
  • Telecommunications: As telecommunications equipment generates significant heat, thermal gap fillers are used to maintain optimal operating temperatures in antennas, base stations, and other related devices.
  • Medical Devices: In the medical field, non-silicone gap fillers are often chosen for sensitive devices where silicone outgassing could be a concern, providing efficient cooling solutions for diagnostic equipment and imaging devices.

Conclusion

Thermal gap fillers are an essential component in modern thermal management solutions, providing efficient heat dissipation in a wide range of applications. Whether you need silicone-based or non-silicone alternatives, these materials offer a versatile and reliable solution for ensuring the performance, safety, and longevity of electronic devices. By choosing the right thermal gap filler, you can protect your components from overheating, vibrations, and mechanical damage, ensuring your devices operate at their best.

 


What is Thermal Putty?

Thermal putty is a highly versatile thermal interface material (TIM) designed to efficiently transfer heat between electronic components and heat sinks. It provides a flexible solution for filling uneven gaps and ensuring effective thermal contact, which is critical for preventing overheating in electronic devices. With the increasing demand for compact and powerful electronics, thermal putty has become an essential material in heat management systems, offering unique advantages over traditional TIMs like thermal grease or thermal pads.

Thermal putty is a versatile thermal interface material (TIM) that combines the properties of both thermal pads and thermal grease. It is used to enhance heat dissipation in electronic components by filling gaps and voids between heat-generating parts and heat sinks.



H-putty

Shiu Li Technology has created a new advanced Thermal Putty interface material. LiPOLY H-putty is a tolerance filled, thermally conductive putty that maintains high compressibility with low stress, high reliability, and will not flow vertically. Our H-putty can replace thermals pads in design gaps of 0.1mm-3.0mm. H-Putty has a bond line thickness of 100-3000μm. The thermal conductivity of the H-putty series is 2.0/3.5/6.0 W/m*K.

LiPOLY’s Putty Series is gap filler material with a thermal conductivity 3.5~8.0W/m*K, high deformation amount, extremely low thermal resistance, low stress, flexible gap adaptation, and excellent tolerance compensation feature can overcome overflow and dryness problems. Ideally suited for LiPOLY Smart Dispense Robot which is the best choice for automated dispensing production.

See the complete thermal datasheet by visiting: Thermal Putty

LiPOLY’s Thermal Putty Series is gap filler material with a thermal

LiPOLY TIM Technology : Thermal Solutions


Key Features of Thermal Putty

  1. Conformability: One of the standout features of thermal putty is its ability to conform to irregular surfaces. It is soft and easily moldable, allowing it to fill in even the smallest air gaps between components. This ensures complete thermal contact and minimizes thermal resistance, which enhances heat dissipation. Thermal putty is ideal for applications where precise thermal contact is required but where other TIMs might struggle to fill gaps effectively.
  2. Self-Leveling and Reworkable: Thermal putty’s self-leveling nature makes it easy to apply, as it spreads out evenly across surfaces under slight pressure. This property reduces the need for complex installation processes. Moreover, unlike some traditional TIMs, thermal putty is reworkable, meaning it can be easily removed or reapplied during maintenance or component replacement without losing effectiveness.
  3. Non-Curing: Unlike some other TIMs that require curing time to reach full effectiveness, thermal putty does not cure. This characteristic allows for instant thermal performance right after application, making it a more efficient solution for fast-paced production environments.
  4. Durability and Long-Term Stability: Thermal putty is known for its long-term stability, maintaining its thermal conductivity and physical properties over extended periods. It does not dry out or degrade, which ensures consistent performance over the lifespan of the device.

Applications of Thermal Putty

Thermal putty is commonly used in a variety of industries and applications, including:

  • Consumer Electronics: It is widely used in smartphones, tablets, and laptops, where heat dissipation is crucial for maintaining device performance and preventing overheating in compact designs.
  • Automotive: In electric vehicles (EVs), thermal putty plays a crucial role in managing the heat generated by batteries, powertrain components, and control modules.
  • Telecommunications: High-power telecom equipment, such as base stations and antennas, often rely on thermal putty to efficiently dissipate heat generated by high-performance processors and other electronic components.

Difference Between Thermal Putty and Other TIMs

Compared to other TIMs like thermal grease or thermal pads, thermal putty offers distinct advantages:

  • Better Gap-Filling: Thermal grease provides good thermal conductivity, but it may struggle to fill large or irregular gaps effectively. Thermal pads are easy to apply but may lack the flexibility needed for certain applications. Thermal putty combines the best of both worlds by offering excellent gap-filling capability and thermal conductivity in a flexible and easy-to-use form.
  • Reusability: Unlike thermal grease, which may dry out over time, or thermal pads that may lose effectiveness after reinstallation, thermal putty can be reused and reworked, making it a cost-effective solution for long-term applications.

In conclusion, thermal putty is an excellent choice for managing heat in high-performance, compact devices. Its flexibility, reusability, and superior gap-filling properties make it a highly effective TIM for modern thermal management challenges.


Fiberglass vs. Polyimide Thermal Conductive Film

When it comes to selecting thermal conductive films for electronic applications, two popular materials stand out: fiberglass and polyimide. Both materials are known for their excellent heat dissipation properties, but each offers unique characteristics that make them suitable for different applications. Understanding their strengths and differences is key to making the right choice for optimal heat management.

 

See the complete thermal datasheet by visiting: Polyimide / Fiberglass

Polyimide is a high-performance material known for its exceptional thermal stability and excellent electrical insulation properties. Polyimide-reinforced thermal conductive insulation films offer superior performance in extreme environments:Fiberglass is a highly durable material known for its excellent heat resistance and mechanical strength. When used as reinforcement in thermal conductive insulation films, it offers several advantages:

LiPOLY TIM Technology : Thermal Solutions


Fiberglass Thermal Conductive Film

Fiberglass thermal conductive films are made from a combination of glass fibers reinforced with thermally conductive fillers. This structure provides both mechanical strength and effective thermal transfer, making fiberglass an ideal choice for applications that require durability under harsh conditions.

Key Features of Fiberglass Thermal Conductive Film:

  1. Mechanical Strength: Fiberglass is known for its exceptional tensile strength, making it highly resistant to tearing, stretching, and puncturing. This makes it suitable for environments where mechanical stress or pressure is a concern.
  2. Thermal Conductivity: Fiberglass films offer moderate thermal conductivity, capable of transferring heat efficiently between components. While not as high as polyimide films in terms of thermal transfer, it performs well in less demanding applications.
  3. Cost-Effectiveness: Fiberglass thermal conductive films are generally more affordable than polyimide alternatives, making them a popular choice for cost-sensitive applications.
  4. Durability Under Extreme Conditions: Fiberglass exhibits excellent resistance to high temperatures, UV exposure, and chemicals, making it suitable for use in automotive, aerospace, and industrial environments where thermal and mechanical stress are common.

Applications: Fiberglass thermal conductive films are often used in industries where robust materials are needed, such as automotive electronics, power converters, and high-performance lighting systems.


Polyimide Thermal Conductive Film

Polyimide thermal conductive films are highly regarded for their superior thermal properties and flexibility. Made from polyimide polymers with embedded conductive fillers, these films offer high thermal conductivity along with excellent electrical insulation, making them ideal for compact, high-performance electronics.

Key Features of Polyimide Thermal Conductive Film:

  1. Superior Thermal Conductivity: Polyimide films have higher thermal conductivity compared to fiberglass, allowing for more efficient heat dissipation in demanding applications. This makes polyimide a preferred choice in advanced electronics, where precise heat management is critical.
  2. Flexibility and Thinness: Polyimide films are extremely thin and flexible, making them suitable for applications with limited space or complex geometries. This characteristic ensures that the film can conform to irregular surfaces without compromising thermal performance.
  3. High-Temperature Stability: Polyimide thermal conductive films can withstand extreme temperatures (up to 400°C or higher), maintaining their physical and thermal properties even in harsh environments. This stability makes polyimide ideal for use in aerospace, military, and advanced electronic devices.
  4. Electrical Insulation: Polyimide is also an excellent electrical insulator, providing protection against electrical shorts while efficiently conducting heat. This dual property is especially valuable in densely packed electronic assemblies.

Applications: Polyimide thermal conductive films are widely used in high-performance electronics such as semiconductors, circuit boards, and mobile devices, where efficient heat management and space-saving designs are essential.


Comparison and Conclusion

While both fiberglass and polyimide thermal conductive films serve important roles in thermal management, they excel in different areas. Fiberglass is a cost-effective, durable solution for applications requiring mechanical strength and moderate heat dissipation. In contrast, polyimide films offer superior thermal conductivity, flexibility, and high-temperature stability, making them ideal for advanced, high-performance applications.

Choosing between the two materials depends on the specific requirements of the application, including factors like temperature range, mechanical stress, and cost constraints. For high-performance electronic devices that demand efficient heat dissipation in tight spaces, polyimide films are the clear choice. On the other hand, fiberglass films are more suitable for robust, cost-effective solutions in industrial and automotive systems.


Thermally Conductive Grease, also known as thermal paste or thermal compound, is a thermally conductive material used to improve the heat transfer between a heat-generating component, such as a CPU or GPU, and a heatsink or cooling solution. The purpose of thermal grease is to fill microscopic imperfections or air gaps on the surface of the component and the heatsink, ensuring maximum contact and efficient heat dissipation. Without thermal grease, these air pockets can act as thermal insulators, significantly reducing the cooling efficiency of the device.

Thermally conductive grease is one-component thermal management material, designed to maximize thermal performance and offers assist in cooling the CPUs GPUs.



LiPOLY’s N series is a non-silicon thermal grease with a thermal conductivity of 1.3-6.0W/m*K. None low-molecular- weight siloxane volatilization cause no electrical contact failure. It is suitable for optical products or sensitive electronic components. Extremely low thermal resistance and good thermal conductivity have been widely used in thermal control technology for consumer electronics and microprocessors. When the temperature of the component rises, the viscosity of the grease will decrease for wetting the interface components.

See the complete thermal datasheet by visiting: G3380NA/NJ/NK/NT Datasheet

Thermal grease, also known as thermal paste or thermal compound, is a thermally conductive material used to improve the heat transfer between a heat-generating component, such as a CPU or GPU, and a heatsink or cooling solution. The purpose of thermal grease is to fill microscopic imperfections or air gaps on the surface of the component and the heatsink, ensuring maximum contact and efficient heat dissipation. Without thermal grease, these air pockets can act as thermal insulators, significantly reducing the cooling efficiency of the device.

LiPOLY TIM Technology : Thermal Solutions


How Does It Work?

Thermally Conductive Grease is not a heat sink by itself, but it enables the heatsink to perform its function more effectively. When applied between the heat source and the heatsink, the grease spreads out evenly, allowing for better heat conduction due to its higher thermal conductivity compared to air. Thermal grease typically comes in either silicone or non-silicone formulations and may contain additives like metal oxides to enhance thermal performance.

Types of  Thermally Conductive Grease

  1. Silicone-Based Thermal Grease: This type is widely used due to its versatility and durability. It contains silicone oil mixed with fillers like zinc oxide, making it flexible and easy to apply.
  2. Non-Silicone Thermal Grease: These are often used in applications where silicone contamination is a concern. They tend to have higher thermal conductivity and stability in extreme temperatures, making them ideal for high-performance applications.

Key Uses Benefits

  • Enhancing Heat Transfer: Thermal grease fills the microscopic air gaps and imperfections between a heat source (such as a CPU or GPU) and a heat sink. This ensures efficient heat transfer by replacing air, which is a poor conductor of heat, with a material that has much higher thermal conductivity3.
  • Preventing Overheating: By improving the thermal interface between components, thermal grease helps prevent overheating, which can lead to system instability, performance degradation, or even hardware damage2.
  • Maintaining Device Stability: Proper application of thermal grease ensures that electronic devices operate within safe temperature ranges, thereby enhancing their stability and longevity.

Typical Applications

  • CPUs and GPUs: Thermal grease is commonly applied between CPUs or GPUs and their respective cooling solutions to ensure effective heat dissipation.
  • Power Electronics: Used in power supplies and motor controls where efficient thermal management is critical to maintaining performance and preventing failure.
  • Optical Devices: In applications where silicone contamination must be avoided, non-silicone thermal greases are preferred to prevent interference with sensitive optical components.

Application Techniques

  • Even Application: It is crucial to apply thermal grease evenly and in the right amount. Too much grease can act as an insulator rather than a conductor, while too little may not cover all the necessary surfaces.
  • Automated Systems: In professional settings, automated dispensing systems can be used to ensure consistent application, minimizing human error and ensuring optimal performance.

What is Thermal Grease? Thermally Conductive Grease, also known as thermal paste or thermal compound, is a thermally conductive material used to improve the heat transfer between a heat-generating component, such as a CPU or GPU, and a heatsink or cooling solution. The purpose of thermal grease is to fill microscopic imperfections or air gaps on the surface of the component and the heatsink, ensuring maximum contact and efficient heat dissipation. Without thermal grease, these air pockets can act as thermal insulators, significantly reducing the cooling efficiency of the device.

In summary, thermal grease is an essential component in modern electronics, ensuring that heat generated by high-performance components is effectively transferred to cooling systems, preventing damage and optimizing device performance.